Please make sure that you print this resource at 100% so that all measurements are correct. To do this, follow the relevant steps below.

Adobe Reader or Adobe Acrobat

- Adobe Reader is a free PDF viewer, from Adobe. To install a copy of Adobe Reader, go to https://get.adobe.com/uk/reader/.
- Once Adobe Reader is installed, open your PDF.
- Go to File>Print.
- Under ‘Page Sizing \& Handling', select ‘Size’.
- From here, make sure that 'Actual Size' is selected.
- Print this page as a test, making sure that the shape below is the correct size once printed.
- If the test print is correct, print your PDF.

Foxit Reader

- Go to File>Print.
- Set the 'Scaling' to 'None'.
- Print this page as a test, making sure that the shape below is the correct size once printed.
- If the test print is correct, print your PDF.

Web Browser

- If printing from a web browser, such as Chrome, Firefox or Microsoft Edge make sure that your printer is set to print at 100%, either by unticking 'Fit to Page' or selecting ‘Actual Size’.
- Print this page as a test, making sure that the shape below is the correct size once printed.
- If the test print is correct, print your PDF.

Maths Assessment Year 6 Term 3: Measurement

For question 3a, children will need to know the conversion rate between miles and kilometres.
You will need a ruler for this assessment.

1. Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.
2. Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places.
3. Convert between miles and kilometres.
4. Recognise that shapes with the same areas can have different perimeters and vice versa.
5. Recognise when it is possible to use formulae for area and volume of shapes.
6. Calculate the area of parallelograms and triangles.
7. Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}].
8. Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.
a) A 2 pint carton of milk is 1.136 litres. How many litres is 7 pints of milk?

b) A tin of tuna weighs 160 g . The tins are sold in packs of 4 .

How much would 3 packs weigh? Write your answer in kilograms.

c) Madison swims 15 lengths of a 25 metre swimming pool each day. In a seven day week, how far will Madison swim? Give your answer in kilometres.

d) A one pence coin weighs 3.56 g and a two pence coin 7.12 g . Selma has a jar of coins. She knows that an empty jar weighs 210 g . What will be the weight of a jar containing $£ 3$ worth of 1 p and 2 p coins? Give your answer in kilograms.

2. Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places.
a) Match up the equivalent units of length:

76 cm	7600 m
7.6 cm	0.076 cm
7.6 km	760 mm
0.76 mm	0.76 km
760 m	0.076 m

b) Complete the following table to identify the equivalent lengths:

Millimetres	Centimetres	Metres
		0.075 m
5.8 mm		
	40 cm	

c) Write the mass shown on these scales, using both kilograms and grams:

	Mass in grams (for example 500g)	Mass in kilograms (for example 0.5 kg)
Bananas		
Cauliflower		
Chicken		
Rabbit		

d) Write the volume of water in each jug, in both millilitres and litres:
i.

ii.

iii.

	Millilitres (for example 1000ml)	Litres (for example 1l)
i.		
ii.		
iii.		

e)

How many minutes are in two and a quarter hours?	
How many minutes is 210 seconds?	
300 minutes is equivalent to how many hours?	
How many minutes is equivalent to three quarters of an hour?	
How many seconds are in 7 minutes?	

3. Convert between miles and kilometres.

a) Identify the equivalent distances in miles and kilometres, rounded to the nearest whole number, by completing the table below:

Distance in miles	Distance in kilometres
2 miles	
5 miles	
	32 km
40 miles	160 km

b) This map shows the location of some cities in the world.

Complete the following table.

Journey	Journey in miles	Journey in kilometres
London to Moscow		2400 km
Delhi to Johannesburg		8000 km
Los Angeles to Rio de Janeiro	6300 miles	

4. Recognise that shapes with the same areas can have different perimeters and vice a) Look at these shapes. The shapes are not drawn to scale.

(These shapes are not to scale.)

Which three shapes have the same area?
Which three shapes have the same perimeter? \qquad
\qquad
\qquad
b) Draw a square with the same area as the rectangle in this grid.

c) Draw a different rectangle with the same perimeter as the one drawn in this grid.

versa.
a) Write a formula you could use to calculate the area of this triangle.

b) Here is a cuboid:

Match the formula to the measurement.

Volume $a b c$

Surface area

$$
2(a b+a c+b c)
$$

c) Here is a cube.

The volume of the cube is $27 \mathrm{~cm}^{3}$ and the surface area is $54 \mathrm{~cm}^{2}$.
Calculate the length of each edge of the cube.

5. Recognise when it is possible to use formulae for area and volume of shapes.
a) Calculate the area of this parallelogram.

b) Draw a parallelogram on this grid with an area of $55 \mathrm{~cm}^{2}$.

c) Calculate the area of this triangle. The triangle is not drawn to scale.

d) Calculate the area of this triangle:

This shape is to scale. You can use a ruler for this question.

6. Calculate the area of parallelograms and triangles.
7. Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}].
a) Here are two gift boxes. Shola wants to work out which box has the greater

not drawn to scale

Which gift box has the greater volume?

volume.
b) A clothing business wants to build a new warehouse. The area of land is 80 m long and 60 m wide. The maximum height is 35 m . There must be a distance of 5 m What is the maximum volume of the warehouse?

between the edge of the building and the edge of the land, all the way around the What is the length of one side of the cube?

building.

c) A cube has a volume of $125 \mathrm{~mm}^{3}$.
not drawn to scale

Use one of the signs $<,>$, or $=$ to compare the volume of the 2 cuboids.

Volume of A		Volume of B

Answer Sheet: Maths Assessment Year 6 Term 3:
Measurement

question	answer		marks	notes
e	How many minutes are in two and a quarter hours?	135 minutes	5	
	How many minutes is 210 seconds?	$31 / 2 \text { or } 3.5$ minutes		
	300 minutes is equivalent to how many hours?	5 hours		
	How many minutes is equivalent to three quarters of an hour?	45 minutes		
	How many seconds are in 7 minutes?	420 seconds		

3. Convert between miles and kilometres.

4. Recognise that shapes with the same areas can have different perimeters and vice versa.

a	same area: $\mathbf{a}, \mathbf{c}, \mathbf{f}$ same perimeter: $\mathbf{b}, \mathbf{c}, \mathbf{d}$	2	
b		1	
C	Any rectangle with a perimeter of 16 cm , e.g. $1 \mathrm{~cm} \times 7 \mathrm{~cm}$	1	A $4 \mathrm{~cm} \times 4 \mathrm{~cm}$ square is correct. Also allow 6 cm $x 2 \mathrm{~cm}$ in a different orientation to the one given.

question	answer	marks	notes
5. Recognise when it is possible to use formulae for area and volume of shapes.			
a	$1 / 2 \times \text { bh or } \frac{\text { bh }}{2}$	2	
b	Volume $\longrightarrow a b c$ Surface area $2(a b+a c+b c)$	1	
c	3 cm	1	
6. Calculate the area of parallelograms and triangles.			
a	$52 \mathrm{~cm}^{2}$	1	
b	any parallelogram with area $55 \mathrm{~cm}^{2}$ e.g. base 11 cm , height 5 cm or base 22 cm , height 2.5 cm	2	
C	$136 \mathrm{~cm}^{2}$	2	
d	$17.5 \mathrm{~cm}^{2}$	2	

7. Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}].

a	$\mathrm{A}=3000 \mathrm{~cm}^{3}, \mathrm{~B}=3360 \mathrm{~cm}^{3}$ B has the greater volume	2	
b	$122500 \mathrm{~m}^{3}$	3	3 marks for a correct answer. 2 marks for correctly multiplying 80 x $60 \times 35=168000 \mathrm{~m} 3$. 1 mark for an incorrect answer, but a calculation of $70 \times 50 \times 35$ was attempted.
c	5 mm	1	2

