Name:

Maths Assessment Year 6 Term 2: Measurement

You will need a ruler for this assessment.

1. Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.
2. Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places.
3. Convert between miles and kilometres.
4. Recognise that shapes with the same areas can have different perimeters and vice versa.
5. Recognise when it is possible to use formulae for area and volume of shapes.
6. Calculate the area of parallelograms and triangles.
7. Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}].

Maths Assessment Year 6 Term 2: Measurement

1. Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.
a) A teacher makes jugs of squash for a school sports day. She uses a 330 ml bottle of squash. She empties the bottle of squash into the jug and fills the bottle with water 6 times, which is also added to the jug.

How much squash is made in the jug? Write your answer in litres.

b) A tin of baked beans weighs 532 g . The tins are sold in packs of 4 .

How much would 2 packs weigh? Write your answer in kilograms.

c) India walks 246 m to school each day and the same distance home. In a five day week, how far will India walk to and from school? Give you answer in kilometres.

d) A pencil weighs 9 g and the box for 12 pencils weighs 2 g . Calculate the weight of a pack of 20 boxes of 12 pencils. Give your answer in kilograms.

																	kg				

2. Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places.
a) Circle true or false to show whether each statement is correct:

4782 ml	$=4.782 \mathrm{l}$	True	False
6.78 m	$=678 \mathrm{~cm}$	True	False
8080 mm	$=8.08 \mathrm{~m}$	True	False
0.003 kg	$=30 \mathrm{~g}$	True	False
3 mm	$=0.03 \mathrm{~cm}$	True	False

b) Complete the following table to identify the equivalent lengths.

Millimetres	Centimetres	Metres
56 mm		
		1.035 m
	49 cm	

c) Write the mass shown on these scales, using both kilograms and grams:

	Mass in grams (for example 500g)	Mass in kilograms (for example 0.5 kg)
Bananas		
Chicken		
Rabbit		
Broccoli		

d) Write the volume of water in each jug, in both millilitres and litres
i.

ii.

iii.

e)

How many minutes are in three and a half hours?	
How many minutes is 105 seconds?	
120 minutes is equivalent to how many hours?	
How many minutes are equivalent to a quarter of an hour?	
How many seconds are in 4 minutes?	

3. Convert between miles and kilometres.

a) Identify the equivalent distances in miles and kilometres, rounded to the nearest whole number, by completing the table below:

Distance in miles	Distance in kilometres
5 miles	
	24 km
20 miles	
35 miles	80 km

b) This map shows the location of some cities in Europe.

Journey	Journey in miles	Journey in kilometres
Paris to Madrid	800 miles	
Madrid to Berlin	1450 miles	
Rome to Paris		1040 km

4. Recognise that shapes with the same areas can have different perimeters and vice versa.

a) Look at these shapes. The shapes are not drawn to scale.

Which three shapes have the same area?
Which two shapes have the same perimeter? \qquad
\qquad
b) Draw a different rectangle with the same area as the one drawn in this grid.

									\|						
	\qquad			\qquad											

c) Draw a square with the same perimeter as the one drawn in this grid.

5. Recognise when it is possible to use formulae for area and volume of shapes.
a) Circle any of these formulae you could use to calculate the area of this triangle.

bh

$$
\frac{1}{2} \times b h
$$

$$
2(b+h)
$$

$$
\frac{\mathrm{bh}}{2}
$$

$$
2 b+2 h
$$

b) Here is a cuboid:

i. Write the formula that could be used to calculate the volume of the cuboid.

ii. Write the formula that could be used to calculate the surface area of the cuboid.

6. Calculate the area of parallelograms and triangles.
a) Calculate the area of this parallelogram.

b) Draw a parallelogram on this grid with an area of $40 \mathrm{~cm}^{2}$.

c) Calculate the area of this triangle:

This shape is not to scale.

d) Calculate the area of this triangle:

This shape is to scale. You can use a ruler for this question.

7. Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}.
a) Here is a parcel. Janek needs to know its volume to know the cost of sending the parcel.

Parcels that are larger than $10000 \mathrm{~cm}^{3}$ cost $£ 12$.
Parcels that are smaller than $10000 \mathrm{~cm}^{3}$ cost $£ 8$.
How much will Janek pay for sending this parcel?

b) A hotel wants to install a swimming pool. The hotel has to choose between these 3 sizes of pool, but want to choose the pool that uses the least amount of water.

Pool	Length	Width	Depth
A	12	8	2
B	10	7	3
C	9	6	4

Which pool has the smallest volume?

c) A cube has a volume of $64 \mathrm{~mm}^{3}$
i. What is the length of one side of the cube?

ii. Is the cube smaller or larger than a cubic centimetre?

d) Here are 4 cuboids:

96 mm

Order the cuboids by volume from smallest to largest.

largest
smallest

| question | answer | marks | notes |
| :---: | :--- | :---: | :---: | :---: |
| 1. Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three
 decimal places where appropriate. | | | |
| a | 2.31 I | 1 | |
| b | 4.256 kg | 1 | |
| c | 2.46 km | 1 | |
| d | 2.2 kg | 2 | 2 marks for the
 correct answer. 1
 mark for an incorrect
 answer with only 1
 mistake in calculating. |

2. Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places.

question	answer			marks	notes
3. Convert between miles and kilometres.					
a	Distance in miles	Distance in kilometres		5	
	5 miles	8km			
	15 miles	24 km			
	20 miles	32km			
	35 miles	56km			
	50 miles	80km			
b	Journey	Journey in miles	Journey in kilometres	3	
	Paris to Madrid	800 miles	1280km		
	Madrid to Berlin	1450 miles	2320km		
	Rome to Paris	650 miles	1040km		

4. Recognise that shapes with the same areas can have different perimeters and vice versa.

a	same area: $\mathbf{a , c} \mathbf{c} \mathbf{e}$ same perimeter: $\mathbf{a , b} \mathbf{b} \mathbf{f}$	2	
b	Any rectangle with an area of $10 \mathrm{~cm}^{2}$, e.g. 10×1,	1	Allow the $2 \mathrm{~cm} \times 5 \mathrm{~cm}$ rectangle in a different rientation.
c	Square of $4 \mathrm{~cm} \times 4 \mathrm{~cm}$	1	

5. Recognise when it is possible to use formulae for area and volume of shapes.

a	$1 / 2 \times$ bh and $\frac{b h}{2}$	2	1 mark for each. 1 mark deducted for each incorrect answer.
b i)	$a b c$	1	
b ii)	$2 a b+2 a c+2 b c$ or $2(a b+a c+b c)$	1	

6. Calculate the area of parallelograms and triangles.

a	$66 \mathrm{~cm}^{2}$	1	
b	any parallelogram with area $40 \mathrm{~cm}^{2}$ e.g. base 8 cm, height 5 cm or base 10 cm, height 4 cm	2	
c	$132 \mathrm{~cm}^{2}$	2	
d	$20 \mathrm{~cm}^{2}$	2	

question	answer	marks	notes
7. Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}].			
a	$£ 8$ as volume $=9600 \mathrm{~cm}^{3}$	2	2 marks for a correct answer. 1 mark for correctly calculating the volume as 9600 cm3
b	Pool A has the smallest volume $A=192 \mathrm{~m}^{3}, B=210 \mathrm{~m}^{3}, C=216 \mathrm{~m}^{3}$	3	2 marks for a correct answer. 2 marks for an incorrect answer, but evidence that 2 of the pools' volume was calculated correctly. 1 mark for calculating the volume of 1 of the pools.
ci)	4 mm	1	
c ii)	smaller	1	
d	ABDC	2	2 marks for correct answer. 1 mark if only 1 in the incorrect place (e.g. ACBD, BACD etc.) Note the volumes do not have to be calculated to find the answer.
		$\begin{gathered} \text { Total } \\ 60 \end{gathered}$	

